Abbreviations

ACR	acute cellular graft rejection	HP	hypersensitivity pneumonitis	PCR	polymerase chain reaction
ADCC	antibody-dependent cell-	HPV	human papilloma virus	PD-1	programmed death-1
	mediated cytotoxicity	HS	hypersensitivity	nDC	plasmacytoid dendritic cell
AHR	acute humoral graft rejection	HSC	hematopoietic stem cell	pIgR	poly-Ig receptor
AICD	activation-induced cell death	HSCT	hematopoietic stem cell	pMHC	peptide-MHC complex
AID	activation-induced cytidine		transplant	PMN	polymorphonuclear leukocytes
	deaminase	HSP	heat shock protein	PRM	pattern recognition molecule
AIDS	acquired immunodeficiency	HSV	herpes simplex virus	PRR	pattern recognition receptor
	syndrome	IBD	inflammatory bowel disease	pΤα	pre-T alpha chain
ALL	acute lymphocytic leukemia	IC	immune complex	PTK	protein tyrosine kinase
AML	acute myeloid leukemia	ICAM	intercellular adhesion molecule	RA	rheumatoid arthritis
APC	antigen-presenting cell	IFN	interferon	RAG	recombination activation gene
β2m	beta2-microglobulin	Ig	immunoglobulin	RBC	red blood cell
BALT	bronchi-associated lymphoid	Ii	invariant chain	RCA	regulator of complement
	tissue	IL	interleukin	Ren	activation
BCR	B cell receptor	iNOS	inducible nitric oxide synthase	RLR	retinoic acid inducible gene-1-
BMT	bone marrow transplant	ITAM	immunoreceptor tyrosine-		like receptor
С	constant; or complement		based activation motif	RNI	reactive nitrogen intermediate
GD	component	ITIM	immunoreceptor tyrosine-	ROI	reactive oxygen intermediate
CD	cluster of differentiation		based inhibition motif	RSS	recombination signal sequence
CDR	complementarity-determining	iTreg	induced regulatory T cell	S	switch region
COD	region	IV-IG	intravenous immunoglobulin	SALT	skin-associated lymphoid tissue
CGR	chronic graft rejection		replacement therapy	SCF	stem cell factor
CHS	contact hypersensitivity	J	joining	SCID	severe combined immunodefi-
CLL	chronic lymphocytic leukemia	KIR	killer Ig-like receptor		ciency
CLP	common lymphoid progenitor	L	ligand; or light chain of Ig	sIg	secreted Ig
CLR	C-type lectin receptor		molecule	SIg	secretory Ig
CML	chronic myelogenous leukemia	LC	Langerhans cell	SLC	surrogate light chain
CMP	common myeloid progenitor	LPS	lipopolysaccharide	SLE	systemic lupus ervthematosus
CMV	cytomegalovirus	LT	lymphotoxin	SMAC	supermolecular activation
CNS	central nervous system	mAb	monoclonal antibody		cluster
CR	complement receptor	MAC	membrane attack complex	SNP	single nucleotide polymorphism
CSF	colony-stimulating factor	MAdCAM	mucosal addressin cellular	SP	single positive (CD4 ⁺ or CD8 ⁺)
cTEC	cortical thymic epithelial cell		adhesion molecule	T1DM	type 1 diabetes mellitus
CTL	cytotoxic T lymphocyte	MALT	mucosa-associated lymphoid	TAA	tumor-associated antigen
	(effector)		tissue	TAP	transporter associated with
D	diversity	MAMP	microbiota-associated		antigen processing
DAMP	damage-associated molecular	MDI	molecular pattern	TB	tuberculosis
DC	pattern	MBL	mannose-binding lectin	Tc	cytotoxic T cell (naïve)
DC	dendritic cell	MBP	myelin basic protein	Tcm	central memory T cell
DN	double negative (CD4-CD8-)	мср	mast cell progenitor	TCR	T cell receptor
DP	double positive (CD4+CD8+)	MHC	major histocompatibility	Td	T-dependent
DIH	delayed type hypersensitivity	mIa	mombrane bound Ig	TdT	terminal dideoxy transferase
EBV	Epstein–Barr virus	MILLA	memorane-bound Ig	T _{DTH}	T cell mediating delayed type
ER	endoplasmic reticulum	МППА	antigen		hypersensitivity
FAE	follicle-associated epithelium	MIIC	MHC class II compartment	TEC	thymic epithelial cell
FcR	Fc receptor	miDNA	micro DNA	Tem	effector memory T cell
FDC	follicular dendritic cell	MDD	multinotent progenitor	TGFβ	transforming growth factor
fTh	follicular Th cells	ME	multiple selenesis		beta
GALT	gut-associated lymphoid tissue	MIS mTEC	multiple scierosis	Th	helper T cell
GC	germinal center	INTEC	cell	Ti	T-independent
GM-CSF	granulocyte-monocyte	N	neurominidose protein of	TIL	tumor-infiltrating lymphocyte
	colony-stimulating factor	1	influenza virus	TLR	Toll-like receptor
GvHD	graft-versus-host disease	NALT	nasopharynx-associated	TNFR	tumor necrosis factor receptor
GvL	graft-versus-leukemia effect		lymphoid tissue	TSA	tumor-specific antigen
Н	heavy chain of Ig molecule;	NCR	natural cytotoxicity receptor	TSG	tumor suppressor gene
	or hemagglutinin protein of	NET	neutrophil extracellular trap	TSLP	thymic stromal lymphopoietin
IIAD	humana suta naisation	NHC	non-hematopoietic cancer	V	variable
ПАК	hyperacute rejection	NHEJ	non-homologous end joining	VAERS	Vaccine Adverse Events
HC	hematopoletic cancer		pathway of DNA repair		Reporting System
HAV	hepatitis A virus	NHL	non-Hodgkin's lymphoma	VCAM	vascular cellular adhesion
пву	hepatitis Grime	NK	natural killer cell		molecule
HUV	nepatitis C virus	NKT	natural killer T cell	VEGF	vascular endothelial growth
HEV	nigh endothelial venule	NLR	NOD-like receptor		factor
HIV	numan immunodeficiency	nTreg	natural regulatory T cell	VZV	varicella zoster virus
ш	vii us Hodakin'a lymphome	PALS	periarteriolar lymphoid sheath	WHO	World Health Organization
	human laukaanta antiaan	PAMP	pathogen-associated molecular	WT	wild type
пLA	numan leukocyte antigen		pattern	XP	xeroderma pigmentosum

The cover image portrays a myeloid-derived suppressor cell (MDSC; light-blue cell with short protrusions) as it differentiates into tumor-associated macrophages. Depending on the microenvironment surrounding the tumor (clumps of reddish-brown cells), MDSCs are thought to give rise to either M1 macrophages (dark-brown spherical cells with long protrusions) or M2 macrophages (light-blue spherical cells with long protrusions in the background). M1 macrophages have tumoricidal activities, whereas M2 macrophages promote tumor growth. This image, rendered by Cheng-Jung Lai, was taken from a 2011 article titled "Paired Immunoglobulin-like Receptor-B Regulates the Suppressive Function and Fate of Myeloid-Derived Suppressor Cells," by Ma, G., Pan, P., Eisenstein, S., Divino, C., Lowell, C., Takai, T., and Chen, S. (*Immunity* 34: 385–395). This article is featured in the "Focus on Relevant Research" box in Chapter 16 of the textbook as well as in the corresponding chapter in the associated online study guide (see *Primer to The Immune Response, 2nd Edition* website: http://booksite. academicpress.com/Mak/ primerAC/).

Primer to The Immune Response

2nd Edition

Tak W. Mak

Mary E. Saunders

Bradley D. Jett

Contributors: Wendy L. Tamminen Maya R. Chaddah

AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO AP Cell is an imprint of Elsevier

AP Cell is an imprint of Elsevier 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1900, San Diego, California 92101-4495, USA 84 Theobald's Road, London WC1X 8RR, UK

This book is printed on acid-free paper.

Copyright © 2014 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher.

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: permissions@elsevier.com. You may also complete your request online via the Elsevier homepage (http://elsevier.com), by selecting "Support & Contact" then "Copyright and Permission" and then "Obtaining Permissions."

Library of Congress Cataloging-in-Publication Data

Mak, Tak W., 1945-

Primer to the immune response / Tak W. Mak, Mary E. Saunders, Bradley D. Jett; contributors, Wendy L. Tamminen, Maya R. Chaddah.
Includes index.
ISBN-13: 978-0-12-374163-9 (alk. paper) 1. Immune response. 2. Immunology. I. Mak, Tak W., II. Saunders, Mary E., Ph.D. III. Jett, Bradley D., Immune response. IV. Title.
[DNLM: 1. Immune System. 2. Immune System Diseases. 3. Immunity. QW 504 M235p 2008]
QR186.M35 2008
616.07'9-dc22

2008001748

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

ISBN: 978-0-12-385245-8

For information on all AP Cell publications, visit our Web site at www.books.elsevier.com

Printed in China 14 15 16 987654321

www.elsevier.com • www.bookaid.org

An Online Study Guide is now available with your textbook, containing case studies, and all of the journal articles.

1. To access the Online Study Guide, as well as other online resources for the book, please visit: http://booksite.academicpress.com/Mak/primerAC/

2. For instructor-only materials, please visit: http://textbooks.elsevier.com/web/product_details. aspx?isbn=9780123847430

Preface

In 2008, we published the first edition of Primer to The Immune Response (by Drs. Tak W. Mak and Mary E. Saunders). Our goal was to create a compact textbook that would serve as a useful resource for undergraduates in the life sciences or health science professions, or for anyone else who wished to gain a solid grounding in the basic concepts of immunology and its clinical connections. The *Primer* was designed to be a clear and succinct distillation of the immunological essentials that were provided at a more advanced level in our 2005 reference book entitled The Immune Response. In 2010, we partnered with Academic Cell to issue the Update Edition of the Primer to The Immune Response, which comprised the first edition of the textbook enhanced by an accompanying online study guide. This study guide, authored by Dr. Bradley Jett, featured cases studies in immunology and links to relevant research articles published by Cell Press. Now we are pleased to present a second edition of the *Primer to The Immune Response* textbook and its accompanying online study guide, both of which have been fully updated to include the many exciting advances in immunology over the past few years. Specifically, all chapters now take into account the growing appreciation of the fundamental function of innate immunity as the foundation of all immune responses. As a result, the vital role of chronic inflammation in initiating and perpetuating autoimmune and inflammatory disorders as well as transplant rejection, hypersensitivity and cancer is highlighted. In addition, the critical importance of the body's commensal organism populations to immune protection and maintenance of homeostasis is emphasized, as is the role of local tissue microenvironments in directing immune responses. Lastly, a new chapter is included that draws together current information on immunodeficiencies that are caused by either a genetic abnormality (primary immunodeficiencies) or HIV infection (acquired immunodeficiency syndrome; AIDS).

Our Contributors, educational consultant Wendy Tamminen and illustrator Maya Chaddah, have once again turned their outstanding talents and backgrounds in immunology toward making the *Primer* as useful as possible to readers needing a rapid, accurate and painless introduction to the immune system. We are truly grateful for the sound, logical pedagogy and crystal clear illustrations resulting from their efforts. During its evolution, the *Primer* has also benefitted greatly from the input of numerous experts on a vast array of immunological topics. These experts, many of whom consented to be listed on the Acknowledgements page, gave freely of their valuable time and perceptive insights to improve the quality and accuracy of both the text and the illustrations. Any remaining errors are solely the responsibility of the authors.

As in previous editions, the *Primer to The Immune Response*, 2nd Edition is divided into two major sections: Part I, "Basic Immunology," and Part II, "Clinical Immunology." In both sections, we have attempted to cover the relevant topics in an engaging way that is concise and clear but comprehensive. Part I (Chapters 1–12) describes the cellular and molecular elements of the immune system and immune responses, while Part II (Chapters 13–20) examines how these elements either combine to preserve good health or malfunction to cause disease. Parts I and II are followed by Appendices A–F, which present current information on topics ranging from historical milestones in immunology to comparative immunology to key techniques used in immunology labs. The textbook is completed by the inclusion of an updated and extensive Glossary that defines the key immunological terms shown in bold throughout the text.

With respect to specific textbook features, the most successful of the approaches used in the first edition have been maintained in the second edition, including the use of special topic *Boxes* that provide an extended discussion of a particular point of interest, and the *Take-Home Message* and *Did You Get It? A Self-Test Quiz* at the end of each chapter. Users of our first edition subsequently gave us feedback on additional

features that would increase the utility of our book, and we have listened. New features include tips in the page margins that provide small but important pieces of information for the reader, such as a link to a useful website on the topic under discussion or a cross-reference to another relevant part of the textbook or a salient statistic. Notes are small boxes that are embedded in the main text between paragraphs and allow a short, crisp expansion of an associated point. As part of the Academic Cell series, our second edition also contains Focus on Relevant Research boxes that give the reader a taste of front-line experimental work and introduce the Cell Press journal article used to build the case study in the corresponding chapter of the online study guide. In addition to these text enhancements, the second edition of the Primer contains Full Color *Illustrations* that are not only fully updated with respect to content but also use color as a means of identifying cell lineages and their products. Complete Figure Legends are now provided for each figure and plate. Our *Tables*, which are helpful in summarizing important points on a topic, have also been updated. Instructors will appreciate our inclusion at the end of each chapter of a new feature entitled Can You Extrapo*late? Some Conceptual Questions*, the answers for which are supplied online only. Also as requested by our audience, we have provided a supplemental reading list for each chapter entitled Would You Like to Read More? As always, we welcome any input that will help to make future editions of this book even more useful for its intended audience.

Our hope is that the *Primer to The Immune Response*, 2^{nd} *Edition* will propel students on a journey of immunological learning that is rewarding and exhilarating. We are confident that students who embark on this journey will be left in no doubt that the immune system is among the most vital and intriguing elements of the human body.

Tak W. Mak, Mary E. Saunders and Bradley D. Jett

In attending conferences and speaking with professors across the biological sciences, the editors at Academic Press and Cell Press learned that journal articles were increasingly being incorporated into the undergraduate classroom experience. They were told of the concrete benefits students received from an early introduction to journal content: the ability to view lecture material in a broader context, the acquisition of improved analytical skills, and exposure to the most current and cutting-edge scientific developments in a given field. Instructors also shared their concerns with the editors about how much additional preparation time was required to find relevant articles, obtain images for classroom presentations, and distill the content of the articles into a form suitable for their students. The desire to provide a solution to these difficulties led to a collaborative effort resulting in the birth of the Academic Cell line of textbooks.

The objective of the Academic Cell initiative is to offer instructors and their students the benefits of a traditional textbook combined with access to an online study guide that highlights the use of primary research articles. The textbook serves as a reference for students and a lecture framework for instructors, and the online study guide is divided into chapters that align with those of the textbook. Each study guide chapter contains a brief summary of the textbook chapter material plus a case study based on a relevant research article chosen from a Cell Press journal. Questions are posed that challenge the student to use the textbook information to understand the research article and work through the case study. The textbook and study guide articles are further integrated by Focus on Relevant Research boxes that appear in the textbook. These passages introduce the Cell Press article used for the accompanying case study and provide context that encourages students to delve further into the article. Instructors will be pleased to note that images from the Cell Press articles have been made available in a PowerPoint format that instructors can use freely. Additional materials contained in the online study guide are the answers to the Conceptual Questions posed in the textbook as well as optional test bank questions and flash cards.