Applied Multivariate Data Analysis

Applied Multivariate Data Analysis

Second Edition

Brian S. Everitt Institute of Psychiatry, King's College London, UK

and

Graham Dunn School of Epidemiology and Health Sciences, University of Manchester, UK

First published in Great Britain in 2001 by Arnold This impression printed by Hodder Education, a part of Hachette Livre UK, 338 Euston Road, London NW1 3BH

© 2001 Brian S. Everitt and Graham Dunn

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Design and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any for or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data A catalog record for this book is available from the Library of Congress

ISBN 978-0-4707-1117-0

8 9 10

Typeset in 10/12pt Times by Academic & Technical Typesetting. Bristol

Contents

1	Mult	ivariate data and multivariate statistics	1
	1.1	Introduction	1
	1.2	Types of data	2
	1.3	Basic multivariate statistics	4
	1.4	The aims of multivariate analysis	6
2	Expl	oring multivariate data graphically	9
	2.1	Introduction	9
	2.2	The scatterplot	9
	2.3	The scatterplot matrix	15
	2.4	Enhancing the scatterplot	17
	2.5	Coplots and trellis graphics	26
	2.6	Checking distributional assumptions using probability plots	41
	2.7	Summary	45
		Exercises	45
3	Princ	ipal components analysis	48
	3.1	Introduction	48
	3.2	Algebraic basics of principal components	49
	3.3	Rescaling principal components	52
	3.4	Calculating principal component scores	53
	3.5	Choosing the number of components	53
	3.6	Two simple examples of principal components analysis	54
	3.7	More complex examples of the application of principal	
		components analysis	56
	3.8	Using principal components analysis to select a subset of	
		variables	63
	3.9	Using the last few principal components	65
	3.10	The biplot	65
	3.11	Geometrical interpretation of principal components analysis	69
	3.12	Projection pursuit	69

vi	Contents

	3.13	Summary Exercises	71 71
4	Corr	espondence analysis	74
	4.1	Introduction	74
	4.2	A simple example of correspondence analysis	75
	4.3	Correspondence analysis for two-dimensional contingency	
		tables	78
	4.4	Three applications of correspondence analysis	80
	4.5	Multiple correspondence analysis	84
	4.6	Summary Exercises	91 91
F	N / 14	idimensional applica	07
3	5 1		93 02
	5.1	Provimity matrices and examples of multidimensional scaling	93
	5.2	Metric least-squares multidimensional scaling	104
	5.5	Non-metric multidimensional scaling	104
	5.6	Non-Fuclidean metrics	113
	57	Three-way multidimensional scaling	114
	58	Inference in multidimensional scaling	119
	59	Summary	122
	0.15	Exercises	122
6	Clust	ter analysis	125
	6.1	Introduction	125
	6.2	Agglomerative hierarchical clustering techniques	128
	6.3	Optimization methods	142
	6.4	Finite mixture models for cluster analysis	148
	6.5	Summary	158
		Exercises	158
7	The	generalized linear model	161
	7.1	Linear models	161
	7.2	Non-linear models	165
	7.3	Link functions and error distributions in the generalized	
		linear model	168
	7.4	Summary	171
		Exercises	172
8	Regr	ession and the analysis of variance	173
	8.1	Introduction	173
	8.2	Least-squares estimation for regression and analysis of variance models	173
	8.3	Direct and indirect effects	190
	8.4	Summary	195
		Exercises	195
9	Log-	linear and logistic models for categorical multivariate data	198
	9.1	Introduction	198

	9.2	Maximum likelihood estimation for log-linear and	
		linear-logistic models	199
	9.3	Transition models for repeated binary response measures	212
	9.4	Summary	216
		Exercises	216
10	Mode	ls for multivariate response variables	218
	10.1	Introduction	218
	10.2	Repeated quantitative measures	218
	10.3	Multivariate tests	222
	10.4	Random effects models for longitudinal data	224
	10.5	Logistic models for multivariate binary responses	237
	10.6	Marginal models for repeated binary response measures	240
	10.7	Marginal modelling using generalized estimating equations	242
	10.8	Random effects models for multivariate repeated binary	
		response measures	244
	10.9	Summary	246
		Exercises	246
11	Discri	mination, classification and pattern recognition	248
	11.1	Introduction	248
	11.2	A simple example	249
	11.3	Some examples of allocation rules	250
	11.4	Fisher's linear discriminant function	253
	11.5	Assessing the performance of a discriminant function	254
	11.6	Ouadratic discriminant functions	255
	11.7	More than two groups	257
	11.8	Logistic discrimination	260
	11.9	Selecting variables	262
	11.10	Other methods for deriving classification rules	263
	11 11	Pattern recognition and neural networks	264
	11.12	Summary	268
		Exercises	268
12	Explo	ratory factor analysis	271
	12.1	Introduction	271
	12.2	The basic factor analysis model	272
	12.3	Estimating the parameters in the factor analysis model	274
	12.4	Rotation of factors	278
	12.5	Some examples of the application of factor analysis	280
	12.6	Estimating factor scores	283
	12.7	Factor analysis with categorical variables	284
	12.8	Factor analysis and principal components analysis	
		compared	287
	12.9	Summary	287
	,	Exercises	288
13	Confi	rmatory factor analysis and covariance structure models	291
	13.1	Introduction	291
	13.2	Path analysis and path diagrams	292

	13.3 13.4 13.5 13.6	Estimation of the parameters in structural equation models A simple covariance structure model and identification Assessing the fit of a model Some examples of fitting confirmatory factor analysis models	295 295 297 298
	13.7	Structural equation models	302
	13.8	Causal models and latent variables: myths and realities	304
	13.9	Summary	306
		Exercises	306
Ap A B C	pendice Softw A.1 A.2 Missin Answ	s are packages General-purpose packages More specialized packages ng values ers to selected exercises	308 308 309 311 314
Rei	ference	S	324

Index

337

Preface

The majority of data sets collected by researchers in all disciplines are multivariate. In a few cases it may be sensible to isolate each variable and study it separately, but in most instances all the variables need to be examined simultaneously in order to fully grasp the structure and key features of the data. For this purpose, one or other method of multivariate analysis may be helpful, and it is with such methods that this book is largely concerned.

Multivariate analysis includes methods both for describing and exploring data and for more formal inferential procedures. The aim of all the techniques is, in a general sense, to display or extract the signal in the data in the presence of noise, and to find out what the data show us in the midst of their apparent chaos.

We have made many changes from the first edition of our book, including a separate chapter on correspondence analysis, a section on neural networks for classification, and discussion of extensions of the generalized linear model to situations involving multiple response variables – for example, repeated measures studies. In addition, the graphical techniques chapter has been completely rewritten and many new graphical methods described. Finally, more – and, we hope – better, examples illustrating techniques are to be found in all chapters. As with the first edition, we have aimed the book both at students on statistics courses and at applied researchers dealing with multivariate data. Readers need to have some background in statistics, perhaps of the kind delivered by an introductory course covering estimation, inference, regression, analysis of variance and so on. The main mathematical requirement is a degree of familiarity with matrix algebra, although much of the more technical material is confined to tables so that the less mathematical reader will often be able to follow the discussion to some extent.

In the first part of the book (Chapters 2 to 6) we concentrate largely on what might loosely be described as the exploratory multivariate techniques; often these are primarily graphical in nature, and the graphical display of multivariate